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It is shown that the free motion of any three-dimensional rigid body colliding elastically between two
parallel, flat walls is equivalent to a three-dimensional billiard system. Depending upon the inertial parameters
of the problem, the billiard system may possess a potential energy field and a non-Euclidean configuration
space. The corresponding curvilinear motion of the billiard ball does not necessarily lead to a decrease of the
stable periodic orbits found in the analogous rectilinear system.@S1063-651X~96!06906-1#

PACS number~s!: 05.45.1b

I. INTRODUCTION

The traditional billiard problem of a point particle moving
in a rectilinear manner and undergoing specular reflections at
boundary walls has proved to be a lucid example of a Hamil-
tonian dynamical system exhibiting both integrable and cha-
otic motion @1–3#. Yet, billiards as dynamical systems first
came to attention when it was shown by Hadamard@4# that
negative curvature billiards, i.e., the study of geodesics on
manifolds of strictly negative curvature~hyperbolic mani-
folds!, provide a rich illustration of dynamical systems with
dense stochastic trajectories. Clearly then, billiards withnon-
rectilinearmotion are of some interest to the study of chaos.
Such systems can be created by non-Euclidean configuration
manifolds as above or by the introduction of some interact-
ing potential field. Systems of this type have been considered
before~i.e., gravitational billiards@5,6#, Aharonov-Bohm bil-
liards @7#! but their construction has been somewhatad hoc.

In this paper, we present a systematic procedure for con-
structing a broad class of physically realizable curvilinear
billiard systems. We begin with the demonstration that the
motion of a freely moving three-dimensional rigid body
making elastic collisions between two flat infinite parallel
walls can, in general, be mapped to a three-dimensional non-
rectilinear billiard system in which the corresponding point
particle moves in a potential energy field and makes specular
reflections at two suitable curved parallel walls~i.e., two-
dimensional manifolds!. While the shape of these walls is
determined solely by the geometric shape of the rigid body,
the potential field and the geodesic nature of the configura-
tion space are determined by the inertial properties~inertia
tensor! of the rigid body. This strict separation between in-
ertial and geometric properties will be used in constructing
certain useful comparisons to two-dimensional billiards. The
equivalence of rigid-body motion with billiards was first
demonstrated for two-dimensional motion in a previous pa-
per @8#. There, all billiards were Euclidean in nature. It was
noted, however, that since the motion of a rigid body in three
~and higher! dimensions is associated with a noncommuta-
tive group, a new type of billiard motion was to be expected,
which is certainly the case according to the statements
above.

Examples of mechanical systems which lead to billiard
systems began with Sinai’s work on the hard sphere Bose
gas which culminated in the invention of the Sinai billiard

@1#. Recent examples include the mapping of a system of two
point particles on an interval colliding elastically with one
another and with the end points, into a billiard problem
within a right angle triangle@9#. Furthermore, in@10#, it was
demonstrated that a two-dimensional billiard with a moving
boundary can be expressed as a higher dimensional billiard
in a potential, whereas in@11#, it was shown that the motion
of a stick in a circle is equivalent to a two-dimensional bil-
liard system with a rotating boundary wall. Billiards in po-
tential energy fields have also been investigated~see@12–
14#!.

Let us now outline the contents of this paper. We begin in
Sec. II with a brief review of the elementary problem of a
one-dimensional stick moving in two dimensions and then
extend these results to three dimensions. As we shall see, this
additional degree of freedom leads to an interacting billiard
system on a flat manifold. Section III considers the motion of
free billiards on certain curved manifolds constructed to de-
scribe the motion of cubical rigid bodies. After these two
illustrative examples, we demonstrate in Sec. IV that the
general system of any freely moving rigid body leads to a
billiard problem which combines the two phenomena found
in the stick and cube problems~i.e., interacting potential
fields and curved manifolds!. Most of these features will be
illustrated in Sec. V when we consider the motion of an
ellipsoid with the mass distribution of a stick, a problem
chosen because of its clear separation between geometric and
inertial properties. This example is well-suited for a compari-
son of the resulting motion with its known two-dimensional
analog. Finally, a number of conclusions and directions for
future study will be discussed in Sec. VI.

II. STICKS AND INTERACTING BILLIARDS

We begin by considering the case of a one-dimensional
stick of total massM which is composed of two equal point
masses separated by a rigid rod of length 2l and which makes
elastic collisions between two flat parallel walls separated by
a distanceh. Let us recall some results from@8# for the case
when the stick moves in two dimensions. The coordinates of
the stick will bez, the height of its center of mass above the
lower wall, and the angle of rotationu from the vertical.
Scaling z with the radius of gyration,k, as h5z/k, the
energy of the stick becomes
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E5
M

2
~ u̇21ḣ2!. ~1!

The distance of closest approach of the center of mass to the
plane ishmin5( l /k)u(cosu)u so that this point particle moves
between boundaries at the bottom,b(u), and the top,t(u),
with

b~u!5
l

k
u~cosu!u, t~u!5

1

k
@h2 l u~cosu!u#. ~2!

A collision between the stick and the wall is described by

~Mk!Dḣ5 f nt, ~Mk2!Du̇5 l ~sinu! f nt. ~3!

The impulse can be eliminated to obtain a relation between
Dḣ andDu̇, and conservation of energy can be used to show
that

Dḣ5
22@ḣ1~ l /k!u̇~sinu!#

11~ l /k!2~sin2u!
. ~4!

Proof that the reflection is specular follows immediately and
is given in@8#. Here, we merely note that, given the form of
the energy~1!, this system clearly describes a free particle.

Now, we want to allow the stick to move in three dimen-
sions and make elastic collisions with two flat walls which
are the planesz50 andz5h. We orient the stick using the
usual polar angles,u andf. The corresponding energy can
be written as

E5
1

2
Ml 2@ u̇21~sin2u!ḟ2#1

1

2
Mż2, ~5!

and the angular momentum of the stick by

Lx5Ml 2@2~sinf!u̇2~sinu!~cosu!~cosf!ḟ#,

Ly5Ml 2@~cosf!u̇2~sinu!~cosu!~sinf!ḟ#,

Lz5Ml 2@~sin2u!ḟ#. ~6!

This problem initially appears to be five dimensional. How-
ever, it is clear that thex andy motion of the center of mass
of the stick is trivial and can be ignored. It is also clear that
the force-free motion of the stick does not result inu and
f being linear functions of time except for geometrical ac-
cidents. Now consider a collision with the wall which im-
parts some impulse,f t, in thez direction.

D~Mż!5 f t. ~7!

There is a corresponding change in the angular momenta:

DLx52 l ~sinu!~sinf!~ f t!, DLy5 l ~sinu!~cosf!~ f t!,

DLz50. ~8!

As a consequence of the third of these equations, we see that

Dḟ50. ~9!

Using this fact, the equations forLx andLy , and the equa-
tions forDLx andDLy , we find that

Du̇5
1

l
~sinu!D ż. ~10!

Finally, we can use the fact that the collision is strictly elas-
tic and equate kinetic energies before and after the collision.
This leads us to a quadratic equation with a trivial solution
D ż50 and a nontrivial solution of

D ż5
22@ ż1 l u̇~sinu!#

11~sin2u!
. ~11!

We are now in a position to draw all desired conclusions
about this special problem. Sinceḟ does not change during
the collisions, the coordinatef is quite passive. It serves
only to ‘‘complicate’’ the motion inu. Equation~11! is iden-
tical to what was found in the above two-dimensional prob-
lem. There is nof dependence in this equation. Further-
more, there can be nof dependence in the wall function.
@This result is general. A general three-dimensional body
will be described by three angles~see below!. Set the first
two and bring the body in contact with the wall. Now rotate
the body about an axis in thez direction through the center
of mass while maintaining contact with the wall. The height
of the center of mass above the wall will not change.# The
wall function is also exactly what we had in the two-
dimensional case. Thus, with the scaling of variables de-
scribed previously, we again find that we have specular re-
flection in the (lu,z) plane for every collision. This apparent
three-dimensional problem is really a two-dimensional prob-
lem in the (lu,z) plane. The only difference is that, as a
consequence of the more complicated equations of motion,
the trajectories between consecutive wall hits are no longer
straight lines. Although the time-dependence ofu is not lin-
ear, it is not complicated. We simply consider the free mo-
tion in a rotated coordinate system such that the angular
momentum vector lies along thez8 axis. In this frame the
angular velocityvz8 will be a constant. It is then easy to
transform back to the originaluz coordinates.

The energy~5! can be rewritten as

E5
1

2
M @~ l u̇ !21 ż2#1

Lz
2

2Ml 2~sin2u!
. ~12!

Since all reference tof has disappeared, this is the total
energy of the billiard ball in the reduced (lu,z) plane. The
third term,Lz

2/2Ml 2(sin2u), can be interpreted as the poten-
tial energy for the two-dimensional billiard system. This ex-
plains the nonlinear time dependence of theu variable. Thus,
a one-dimensional stick bouncing elastically between two
flat walls is equivalent to an interacting billiard problem
~with suitable walls! on a flat two-dimensional manifold
~with a specific form of the interacting field!.

III. CUBES AND CURVILINEAR BILLIARDS

Another specific example will be sufficient to point the
way to the general problem. Consider a cube of total mass
M and sides 2a composed of eight identical point masses at
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the corners joined by rigid rods.~We have now proceeded
from tossing coins to rolling dice.! Start by aligning the cube
with its corners at (6a,6a,6a). ~For a general rigid body,
we would start with the principal axes along the laboratory
x, y, and z axes.! Now consider the most general angular
orientation of the cube by performing the rotations

R~abg!5Rz~g!Ry~b!Rz~a!, ~13!

where all the rotations are about the laboratory-fixed axes,
and theR’s are the usual 333 orthogonal rotation matrices
@see Eq.~A11! in the Appendix for an explicit representation
of R(abg)#. It is straightforward to construct the rotational
kinetic energy as

Erot5
1

2(m mm(
i51

3

~Ṙxm! i~Ṙxm! i . ~14!

Them sum is over the point masses and allows us to recover
the moment of inertia tensor in the general case.~We could
have done this for the stick. If we had, the first rotation
would have had no effect. We would have obtained the re-
sults above with some sign changes on the angles.! For the
specific case of the cube we find

E5
1

2
Ma2@2ȧ212ḃ212ġ214ȧġ~cosb!#1

1

2
Mż2.

~15!

It is equally easy to generate the angular momentum compo-
nents as

Li5(
m

mm« i jk~Rxm! j~Ṙxm!k . ~16!

Again, we can recover the moment of inertia tensor in the
general case. For the specific case of the cube, this produces

Lx5Ma2@22~sing!ḃ12~cosg!~sinb!ȧ#,

Ly5Ma2@22~cosg!ḃ22~sing!~sinb!ȧ#,

Lz5Ma2@22ġ22~cosb!ȧ#. ~17!

Now, consider the situation when the (a,a,a) corner of
the cube is in contact with the plane atz50. The coordinates
of this point are

x/a5~cosg!~cosb!@~cosa!1~sina!#

1~sing!@~cosa!2~sina!#2~cosg!~sinb!, ~18!

y/a52~sing!~cosb!@~cosa!1~sina!#

1~cosg!@~cosa!2~sina!#1~sing!~sinb!, ~19!

and

z/a5~sinb!@~cosa!1~sina!#1~cosb!. ~20!

We can now repeat the manipulations from the example of
the stick to study the nature of the present collision. Equation
~7! is unaltered. An impulse in thez direction will leave
DLz50. This results in the relation

Dġ52~cosb!Dȧ. ~21!

The expressions forLx and Ly can be used to determine
Dȧ andDḃ in terms ofD ż. This leads to

Dȧ5
D ż

2a~sinb!
@~cosa!2~sina!# ~22!

and

Dḃ5
D ż

2a
@2~sinb!1~cosb!~cosa!1~sina!#. ~23!

We can impose the condition of conservation of energy un-
der the collision and eliminateġ from the expression for
Lz in ~17!. This gives

a2@~2ȧDȧ1Dȧ2!~sin2b!1~2ḃDḃ1Dḃ2!#

1 żD ż1D ż2/250. ~24!

Finally, using~22! and ~23!, we determineD ż to be

D ż54„ż1a$ḃ~cosb!~cosa!1~sina!

1~sinb!@ȧ~cosa!2~sina!2ḃ#%…/$~sin2b!~sin2a!

1~sin2b!@~cosa!1~sina!#24%. ~25!

It is interesting to note that all reference tog has disap-
peared. Neither does this angle play any role in the wall
function. This represents a genuine reduction of the dimen-
sionality of the problem. At this point, we have obtained all
available information. What remains is to see if there is a
natural way to interpret these results in order to recover
specular reflection. With this in mind, it is useful to write the
kinetic energy~15! in a more suggestive way. Specifically,

E5
1

2
Ma2@2ȧ2~sin2b!12ḃ2#1

Lz
2

4Ma2
1
1

2
Mż2. ~26!

Evidently,Lz is not changed by elastic collisions with the
wall in the xy plane. It is apparent that it is useful to intro-
duce a metricgab in the abz subspace with nonzero ele-
mentsgaa5(sin2b), gbb51, andgzz51. With the introduc-
tion of the velocity vector

v5~ ȧ,ḃ,ż/A2a!, ~27!

we can write the total energy of the billiard system,

E5Ma2vavbgab1
Lz
2

2Ma2
, ~28!

in a manner which emphasizes the non-Euclidean nature of
the configuration space (a,b,z/A2a). This metric will be
included in all subsequent scalar product operations. It is
important to note that this metric is determined by the iner-
tial tensor and is independent of the shape of the body. The
fact that thea2b components of the metricgab correspond
to the surface of a sphere in the present example is a conse-
quence of the equality of the three principal moments of
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inertia of a cube. In general, we would expect an ellipsoid.
Thus, our billiard space is curved.

In order to address the question of specular reflection, we
define the wall function using Eq.~20!,

b~a,b!52z~a,b!/A2

52@~sinb!~cosa!1~sina!1~cosb!#/A2.
~29!

This leads to an associated wall surface,

S~a,b!5„a,b,b~a,b!…, ~30!

and two tangents to this surface,

Sa5
]S

]a
5~1, 0, ba!, Sb5

]S

]b
5~0, 1, bb!. ~31!

The normal to the wall at each point,N, must be orthogonal
to these two tangent vectors so that we haveN•Sa50 and
N•Sb50 where the metric,gab , must be included in form-
ing the scalar product. This leads to

N5@2ba /~sin
2b!,2bb ,1#. ~32!

The final ingredient required for the demonstration of specu-
lar reflection is the vector describing the change of the ve-
locity due to the collision:

Dv5~Dȧ,Dḃ,D ż/A2a!, ~33!

where we knowDȧ, Dḃ, andD ż are all known from Eqs.
~22!, ~23!, and~25! above.

The conditions for specular reflection are now simply ex-
pressed. The two tangential components of the velocity must
remain unchanged, and the normal component of the velocity
must be reversed. Thus,

Sa•~v1Dv !5Sa•v, Sb•~v1Dv !5Sb•v,

N•~v1Dv !52N•v, ~34!

or

Sa•Dv50, Sb•Dv50, N•~2v1Dv !50. ~35!

Equations~22!, ~23!, and ~25! reveal that the reflection is
specular provided that the metric is included in the scalar
product.

It is useful to look at the structure of this argument in a
slightly different way. Conservation of energy leads to the
condition

a2@2ȧDȧ1~Dȧ!2#gaa1a2@2ḃDḃ1~Dḃ!2#gbb

1@2żD ż1~D ż!2#gzz/250. ~36!

The third equation of~35! can be expressed as

2aba~2ȧ1Dȧ!
gaagzz
gaa

2abb~2ḃ1Dḃ!
gbbgzz
gbb

1~2ż1D ż!
gzz

A2
50, ~37!

where we have used the fact that~32! can be written as

N5S 2ba

gzz
gaa

,2bb

gzz
gbb

,1D . ~38!

From the two tangential conditions,

Dȧgaa1baD żgzz/A2a50,

Dḃgbb1bbD żgzz/A2a50, ~39!

we find that

ba52A2a
Dȧ

D ż

gaa

gzz
, bb52A2a

Dḃ

D ż

gbb

gzz
. ~40!

The substitution of~40! into the normal constraint~37! leads
imediately to~36! which came from the requirement of con-
servation of energy. Thus, by imposing conservation of en-
ergy in the billiard space and verifying that the tangential
conditions hold, the normal constraint is automatically satist-
fied. This is of practical value since it is no longer necessary
to solve forD ż explicitly in terms ofDȧ andDḃ. That the
present billiard manifold is an orthogonal system~i.e., the
metric tensor is diagonal! and that it possesses a trivial po-
tential ~i.e., free motion! is due to the fact that all principal
moments of inertia are equal in this special case. As we will
see in Sec. IV, the most general metric will contain off-
diagonal elements, and the potential will be more compli-
cated.

However, much of the above does generalize to arbitrary
shapes. The wall function will always be indpendent ofg.
Collisions with xy planes cannot changeLz , so that it is
always possible to eliminate all reference tog in the analogs
of Eqs. ~25! and ~26!. Thus,g will again be a neglectable
coordinate. We will find a nontrivial, ellipsoidal metric in the
coordinatesa andb. As is the case here, the details of this
metric will depend only on the inertial tensor of the system.
Also, the wall function will be determined solely by the
shape of the body, independent of the mass distribution and
the generalized metric.

IV. GENERAL RIGID BODIES

The extension of the results of the preceding section to the
case of arbitrary rigid-bodies is straightforward. Here, we
shall describe the general approach. Details are given in the
Appendix. It is elementary to determine the point of contact
for any (a, b, g). One starts with the body oriented so that
the body-fixedx, y, andz axes coincide with the laboratory
axes. Label a point on the surface of the body by the usual
polar anglesu and f and specify the associated radius,
R(u,f). Apply R(a,b,g) to this vector. The condition that
this point should be a point of contact is that the~inward!
normal to the surface should point in the~laboratory! 1z
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direction. This defines the wall function in terms of
R(u,f), independent of the metric. As in the two-
dimensional case, the various derivatives ofR which enter
into the proof of specular reflection through the analog of
~35! can be eliminated by the condition that the surface
should be tangent to the plane at the point of contact.

The metric tensor,gab , can be read from the form of the
energy once the angleg has been eliminated using relations
analogous to~17! and~21!. This yields a billiard energy hav-
ing the form

E5
ȧ2

2D~a,b!
~sin2b!@Ix2~sin2a!1Iy2~cos2a!1IxIy1IxIz

1IyIz#1
ḃ2

2D~a,b!
@Ix2~cos2a!~cos2b!1Iy2~sin2a!

3~cos2b!1Iz2~sin2b!1IxIy1IxIz1IyIz#

1
ȧḃ

D~a,b!
~Iy22Ix2!~cosb!~sinb!~cosa!~sina!

1
Lz
2

2D~a,b!
1
1

2
Mż2, ~41!

where

D~a,b!5$Ix@12~cos2a!~sin2b!#1Iy@12~sin2a!~sin2b!#

1Iz~sin2b!%. ~42!

Thus, we are led to define the metric tensor as

gaa5
~sin2b!@Ix2~sin2a!1Iy2~cos2a!1IxIy1IxIz1IyIz#

D~a,b!

gbb5@Ix2~cos2a!~cos2b!1Iy2~sin2a!~cos2b!1Iz2~sin2b!

1IxIy1IxIz1IyIz#/D~a,b!

gab5
~Iy22Ix2!@~cosb!~sinb!~cosa!~sina!#

D~a,b!

gzz5M . ~43!

This allows us to rewrite~41! as

E5
vavbgab

2
1

Lz
2

2D~a,b!
. ~44!

~An implicit factor of 2 has been included in the definition of
gab since gab5gba). When Ix5Iy , this tensor becomes
diagonal ~i.e., the coordinate system becomes orthogonal!.
As expected, we obtain a potential energy term,
(Lz

2/2D(a,b)), which depends only on the relative magni-
tude of the principal moments of inertia. In the completely
symmetric case ofIx5Iy5Iz , D(a,b) is a constant and the
motion is free. The construction of the billiard geometry and
the proof of specular reflection can be found in the Appen-
dix.

V. ELLIPSOIDS

Since the results of the preceding section and the Appen-
dix are somewhat complicated, we consider the specific ex-
ample of an ellipsoid of revolution whose surface is given by

~11e!~x1
21x2

2!1x3
351. ~45!

It is useful to parametrize the coordinates as

x15R~u,f!~sinu!~cosf!,

x25R~u,f!~sinu!~sinf!, ~46!

x35R~u,f!~cosu!,

where

R~u,f!5
1

@11e~sin2u!#1/2
. ~47!

We have deliberately chosen an ellipsoid~45! in order to
haveR(u,f) independent off. It is our intention to con-
sider a three-dimensional billiard system with strong simi-
larities to the two-dimensional systems studied previously.
The present choice will enable us to make a direct compari-
son with the results of Ref.@8#.

The billiard wall function is obtained from Eq.~A16! of
the Appendix

bwall52z~a,b,p2uc ,p2fc!

5
@~sinb!~sinu!ccos~a1fc!1~cosb!~cosuc!#

@11e~sin2u!c#
1/2 ,

~48!

whereuc andfc are the angles of contact when the ellipsoid
hits the plane atz50. That is, we must have

]z

]u
~u5p2uc ,f5p2fc!50 ~49!

and

]z

]f
~u5p2uc ,f5p2fc!50. ~50!

This results in the relations

~sinuc!~cosb!~11e!5~cosuc!~sinb!cos~a1fc! ~51!

and

2tana5tanfc , ~52!

which indicates thatfc52a. Thus,bwall is independent of
fc . Finally, solving for (sinuc) and (cosuc) in ~51! and sub-
stituting back into~48! produces

bwall~a,b!5F11e~cos2b!

11e G1/2, ~53!

which is the exact result found for the~flat! ellipse in @8#.
This is not surprising since the symmetrical rigid body under
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consideration is a surface of revolution. We also note that the
corresponding billiard system has atwo-dimensional con-
figuration space@i.e., an appropriately scaled (b,z) sub-
space# because of this symmetry. As was mentioned before
and demonstrated above, the shape of the walls for the
equivalent billiard problem is determined solely by the geo-
metrical properties of the rigid body.

In order to determine the trajectories of our billiard we
must specify its inertial properties. We choose to endow this
ellipsoid with the inertia tensor of the one-dimensional stick
of Sec. II. That is, the mass is concentrated along the sym-
metry axis of the ellipsoid. Thus, the energy of the billiard
problem will be given by Eq.~12! with l51 andu5b and
the corresponding equations of motion@obtained from the
Lagrangian~5!# are

b̈2S Lz
2

M2l 4D ~cosb!

~sin3b!
50, z̈50. ~54!

This provides another illustration of the distinction between
the nature of the billiard’s trajectories and its wall function.
The wall function of the ellipsoid~53! is not that of the stick
given in ~2!. For this problem, the center of mass moves in a
nonzero potential~if Lz is nonzero! but with a flat metric
and, as always, with specular reflection at every collision.

An example is shown in Fig. 1 for an ellipsoid with
e50.5 andh52. In this case, the major axis of the ellipsoid
is equal to the wall separation as indicated by the fact that
the upper and lower walls touch atb50 andp. The ellip-
soid does not have sufficient room to ‘‘turn around.’’ In spite
of this fact, the motion of the analogous two-dimensional
system is very rich displaying periodic orbits, resonance is-
lands, and chaotic regions. A sample trajectory of the point
particle is shown in Fig. 1 for (Lz

2/M2l 4)51. ~Note that we
have adopted different horizontal and vertical scales in the
interest of visibility. This makes it difficult to recognize
specular reflection.! For purposes of comparison, the same
trajectory is followed in Fig. 2 forLz50. The results of this
figure areidentical to those of the analogous rectilinear prob-
lem of an ellipse moving in a plane studied in@8#. In spite of
the strong physical similarities between these problems,
there are two qualitative distinctions of interest. As indicated
by ~54!, the motion is not rectilinear whenLz is nonzero.

This is apparent in Fig. 1. Further, we see from~12! that
there must be turning points in the motion.~Between colli-
sions,ż is constant. Evidently,u̇ must decrease in magnitude
and ultimately change sign asu approaches 0 orp.)

Figures 3 and 4 provide a more complete summary of the
motion for these two systems. At each collision with the
walls, we plot the angular orientation of the body and the
angle of incidence~measured relative to the normal at the
point of contact!. The investigation here has been rather cur-
sory with the inclusion of only 103 points. Again, plots with
a content similar to Fig. 4 have been considered in@8#. Al-
though the figure is somewhat crude, there is clear evidence
of the elliptic fixed point, periodic orbits, resonance islands,
and chaotic regions. The results of Fig. 3 are remarkably
similar given the qualitative differences in the individual tra-
jectories suggested in Fig. 1. The only qualitative difference
of note is the overall compression of the figure as a conse-
quence of the existence of turning points in the case ofLz
Þ0. The survey of Fig. 3 does not reveal resonance islands;
this is probably due to the roughness of the exploration.

VI. CONCLUSIONS

This paper has continued the demonstration, initiated in
@8#, of the equivalence of a class of problems in rigid body

FIG. 1. A trajectory in configuration space for the ellipsoidal
systeme50.5, h52, andLzÞ0 as indicated in the text.

FIG. 2. A trajectory in configuration space for the ellipsoidal
systeme50.5, h52, andLz50 ~noninteracting case!.

FIG. 3. A phase space surface of section for the ellipsoidal
system of Fig. 1.
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motion to billiard problems. The present three-dimensional
considerations reveal a richness~in the metric and through
the presence of a potential! not encountered in two dimen-
sions. The utility of this equivalence can be recognized in
either direction. On the one hand, it is extremely appealing to
have physically motivated and even physically realizable ex-
amples of billiard problems in higher dimensions. On the
other hand, familiarity with general billiard results can cut
through some of the difficulties associated with rigid body
motion. For example, the wall function for a cube making
elastic collisions between parallel walls is everywhere con-
vex and thus provides a strong suggestion that the resulting
motion is chaotic.~Since, as noted, there is a nonflat metric
in this problem, the issue cannot be regarded as completely
settled.!

There are several extensions of the present three-
dimensional results which could be made. In two and three
dimensions we have seen that there is a single billiard prob-
lem equivalent to a given rigid body problem. In two dimen-
sions we demonstrated that, for every periodic billiard prob-
lem, there exist infinitely many equivalent rigid body
problems.~The multiplicity reflects freedom in choosing the
separation,h, between the parallel walls which can have any
value greater than somehc determined by the shape of the
billiard wall.! We expect that this proof can be extended to
three dimensions without difficulty.

There is no reason to restrict attention to rigid-bodies col-
liding with parallel walls. One can equally well imagine a
rigid body rattling inside an infinite cylinder of arbitrary
cross-sectional shape or confined within an arbitrary closed
three-dimensional surface. It is expected that these problems
can also be mapped uniquely onto billiard problems using
arguments similar to those adopted here and in@8#.
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APPENDIX A

In order to determine the general rotational contribution to
the kinetic energy, we start from Eq.~14!. All the time de-
pendence is inR. Initially, the principal axes of the body are
aligned with the laboratory axes. The corresponding mo-
ments of inertia are nowIx , Iy , andIz , and thus,E be-
comes

E5
1

2
Ix@2~cosb!ȧġ12~sina!~cosa!~sinb!ḃġ1~cos2a!

3~cos2b!ġ21ȧ21~cos2a!ḃ21~sin2a!ġ2#

1
1

2
Iy@2~cosb!ȧġ22~sina!~cosa!~sinb!ḃġ1~sin2a!

3~cos2b!ġ21ȧ21~sin2a!ḃ21~cos2a!ġ2#

1
1

2
Iz@~sin2b!ġ21ḃ2#1

1

2
Mż2. ~A1!

Similarly, we can work with Eq.~16! and find the general
expression for the various components of the angular mo-
mentum.

Lx5Ix@~sinb!~cosg!ȧ2@~sina!~cosa!~cosb!~cosg!

1~cos2a!~sing!#ḃ1@~cos2a!~sinb!~cosb!~cosg!

2~sina!~cosa!~sinb!~sing!#ġ#1Iy@~sinb!~cosg!ȧ

1@~sina!~cosa!~cosb!~cosg!2~sin2a!~sing!#ḃ

1@~sin2a!~sinb!~cosb!~cosg!1~sina!~cosa!~sinb!

3~sing!#ġ#2Iz@~sing!ḃ1~sinb!~cosb!~cosg!ġ#

~A2!

Ly5Ix$2~sinb!~sing!ȧ1@~sina!~cosa!~cosb!~sing!

2~cos2a!~cosg!#ḃ1@2~cos2a!~sinb!~cosb!~sing!

2~sina!~cosa!~sinb!~cosg!#ġ%1Iy$2~sinb!~sing!ȧ

1@2~sina!~cosa!~cosb!~sing!2~sin2a!~cosg!#ḃ

1@2~sin2a!~sinb!~cosb!~sing!1~sina!~cosa!~sinb!

3~cosg!#ġ%1Iz@2~cosg!ḃ1~sinb!~cosb!~sing!ġ#

~A3!

and finally

Lz5Ix$2~cosb!ȧ2~sina!~cosa!~sinb!ḃ1@2~sin2a!

2~cos2a!~cos2b!#ġ%1Iy$2~cosb!ȧ1~sina!~cosa!

3~sinb!ḃ1@2~cos2a!2~sin2a!~cos2b!#ġ%

2Iz@~sin2b!ġ#. ~A4!

For Ix5Iy5Iz , the above equations reproduce the previous
results for the cube, whereas settingIx5Iy50 gives the
expressions for the stick.

FIG. 4. A phase space surface of section for the ellipsoidal
system of Fig. 2.
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We can eliminate reference to the angleg from the ex-
pression for the total energyE by using the equation for
Lz . This is useful for two reasons. First, at the point of
contact,g is a symmetry angle since it specifies a final rota-
tion about thez axis through the center of mass, and thus
cannot alter the height of the center of mass above the wall.
Second,Lz is a constant of the motion because the impact
force is normal to the wall. Solving forġ in ~A4! gives

ġ5@~Iy2Ix!~sina!~cosa!~sinb!ḃ2Lz2~Ix1Iy!

3~cosb!ȧ#/$Ix~sin2a!1Iy~cos2a!1Iz~sin2b!

1~cos2b!@Ix~cos2a!1Iy~sin2a!#% ~A5!

By substituting this expression back into~A1! and simplify-
ing, one is left with Eqs.~41! and ~42! of Sec. IV.

Now, we wish to determine the changes in the various
angular velocities due to the collision with the wall. We seek
Dȧ, Dḃ, andDġ ~but notD ż!!. First consider the follow-
ing three quantities:

A15$@Lx~cosg!2Ly~sing!#~sinb!2Lz~cosb!%/~Ix1Iy!,

A25$@„Lx~cosg!2Ly~sing!…~cosb!1Lz~sinb!#~cosa!

2@Lx~sing!1Ly~cosg!#~sina!%/~Iy1Iz!,

A352$@„Lx~cosg!2Ly~sing!…~cosb!1Lz~sinb!#~sina!

1@Lx~sing!1Ly~cosg!#~cosa!%/~Ix1Iz!. ~A6!

It can be verified that

A15ȧ1ġ~cosb!,

A25ḃ~sina!2ġ~cosa!~sinb!,

A35ḃ~cosa!1ġ~sina!~sinb!. ~A7!

Thus,

DA15Dȧ1Dġ~cosb!,

DA25Dḃ~sina!2Dġ~cosa!~sinb!,

DA35Dḃ~cosa!1Dġ~sina!~sinb!, ~A8!

and

Dġ5@DA3~sina!2DA2~cosa!#/~sinb!,

Dȧ5DA12~cosb!Dġ,

Dḃ5DA2~sina!1DA3~cosa!. ~A9!

Next, DA1 ,DA2 , andDA3 are obtained from the equations
of motion

DLx5y fnt, DLy52x fnt,

DLz50, MD ż5 f nt. ~A10!

Let us first define ourx,y, andz coordinates. As explained
earlier, we label a point on the surface of our rigid body by a
radius vector and apply the rotation matrixR(a,b,g) given
by

R115~cosg!~cosb!~cosa!2~sing!~sina!,

R125~cosg!~cosb!~sina!1~sing!~cosa!,

R1352~cosg!~sinb!,

R2152~sing!~cosb!~cosa!2~cosg!~sina!,

R2252~sing!~cosb!~sina!1~cosg!~cosa!,

R235~sing!~sinb!,

R315~sinb!~cosa!,

R325~sinb!~sina!, R335~cosb!, ~A11!

to RW (u,f) resulting in x(a,b,g,u,f), y(a,b,g,u,f),
andz(a,b,g,u,f). Using these expressions forx and y in
the equations of motion produces

DA15
R~u,f!D ż

M ~Ix1Iy!
@2~sinu!~cosf!~sina!~sinb!

1~sinu!~sinf!~cosa!~sinb!],

DA25
R~u,f!D ż

M ~Iy1Iz!
@~sinu!~sinf!~cosb!

2~cosu!~sina!~sinb!#,

DA35
2R~u,f!D ż

M ~Ix1Iz!
@2~sinu!~cosf!~cosb!

1~cosu!~cosa!~sinb!#. ~A12!

Finally, substituting these into the equations forDġ, Dȧ,
andDḃ ~A9! provides the desired expressions

Dġ5
R~u,f!D ż

M ~sinb! F ~sina!

Ix1Iz
@~sinu!~cosf!~cosb!2~cosu!

3~cosa!~sinb!#2
~cosa!

Iy1Iz
@~sinu!~sinf!~cosb!

2~cosu!~sina!~sinb!#G , ~A13!
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Dȧ5
R~u,f!D ż

M F 1

Ix1Iy
@2~sinb!~sinu!~sina!~cosf!

1~sinb!~sinu!~cosa!~sinf!#

2cotbS ~sina!

Ix1Iz
@~sinu!~cosf!~cosb!

2~cosu!~cosa!~sinb!#

2
~cosa!

Iy1Iz
@~sinu!~sinf!~cosb!

2~cosu!~sina!~sinb!# D G , ~A14!

Dḃ5
R~u,f!D ż

M F ~sina!

Iy1Iz
@~sinu!~sinf!~cosb!2~cosu!

3~sina!~sinb!#1
~cosa!

Ix1Iz
@~sinu!~cosf!~cosb!

2~cosu!~cosa!~sinb!#G . ~A15!

One final piece of information is needed before we can
proceed with the verification of specular reflection. From Eq.
~A11!, it can be deduced that

z5R~u,f!@~sinb!~cosa!~sinu!~cosf!1~sinb!~sina!

3~sinu!~sinf!1~cosb!~cosu!#. ~A16!

Using this, we can derive the curved billiard wall~a two-
dimensional hypersurface! for our system. First,z must be
extremized with respect tou and f, i.e., ¹z(uc ,fc)50.
This results in two conditions,

]z

]u
~u5uc ,f5fc!5S ]R

]uc
D @~sinb!~cosa!~sinuc!~cosfc!

1~sinb!~sina!~sinuc!~sinfc!1~cosb!~cosuc!#

1R@~sinb!~cosa!~cosuc!~cosfc!1~sinb!~sina!

3~cosuc!~sinfc!2~cosb!~sinuc!#50 ~A17!

and

]z

]f
~u5uc ,f5fc!5S ]R

]fc
D @~sinb!~cosa!~sinuc!~cosfc!

1~sinb!~sina!~sinuc!~sinfc!

1~cosb!~cosuc!#1R@2~sinb!

3~cosa!~sinuc!~sinfc!1~sinb!

3~sina!~sinuc!~cosfc!#50. ~A18!

As a consequence of these relations, all reference to deriva-
tives of R disappears in the evaluation of]z/]a and
]z/]b, which will be needed below to construct the tangents
and normals to the curved billiard wall.

Our billiard problem exists in a three-dimensional space
given by the coordinates (a,b,z) which specify the height of
the center of mass and the orientation of the body. The center
of mass moves between wall surfaces which depend on the
orientation of the body. We denote the lower wall as
S(a,b,2z). ~The upper wall is displaced byh, reflected,
and subject to an evident phase shift.! Of course, theu and
f dependence ofz must be eliminatedvia Eqs. ~A17! and
~A18!, i.e., uc5uc(a,b) andfc5fc(a,b). The two prin-
cipal tangent vectors to the lower wall are
Sa5(1, 0,2]z/]a) and Sb5(0, 1,2]z/]b). Using Eq.
~A16! and the two extremum conditions~A17! and ~A18!,
one finds that

]z

]a
5R~u,f!@2~sinb!~sina!~sinu!~cosf!

1~sinb!~cosa!~sinu!~sinf!# ~A19!

and

]z

]b
5R~u,f!@~cosb!~cosa!~sinu!~cosf!1~cosb!~sina!

3~sinu!~sinf!2~sinb!~cosu!#. ~A20!

As in the specific example of the cube, there are two condi-
tions for specular reflection with respect to the tangent vec-
tors Sa and Sb . Since the velocity of the billiard ball is
v5(ȧ,ḃ,ż), these tangent conditions read

Sa•Dv5Dȧgaa1Dḃgab2D ż
]z

]a
gzz50 ~A21!

and

Sb•Dv5Dȧgab1Dḃgbb2D ż
]z

]b
gzz50. ~A22!

It can be shown following considerable tedious algebra that
these two equations are satisfied.

Finally, we prove that the last condition for specular re-
flection, viz., N•(2v1Dv)50, holds automatically if the
tangent conditions hold and energy conservation is valid in
the billiard space. Denoting the normal asN5(N1 ,N2 ,1),
the equationsN•Sa50, N•Sb50 are explicitly given by

N1gaa1N2gab5
]z

]a
gzz ~A23!

and

N1gab1N2gbb5
]z

]b
gzz. ~A24!

Solving forN1 andN2 , one finds

N15
@~]z/]a!gbb2~]z/]b!gab#gzz

~gaagbb2gabgab!
~A25!

and
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N25
@~]z/]a!gab2~]z/]b!gbb#gzz

~gabgab2gaagbb!
. ~A26!

Using the above expressions,N•(2v1Dv)50 becomes

~2ȧ1Dȧ!~N1gaa1N2gab!1~2ḃ1Dḃ!~N1gab1N2gbb!

1~2ż1D ż!gzz50, ~A27!

which simplifies to

~2ȧ1Dȧ!~]z/]a!gzz1~2ḃ1Dḃ!~]z/]b!gzz

1~2ż1D ż!gzz50. ~A28!

From the tangent equations~A21! and ~A22! , we find that

]z

]a
5

Dȧ

D ż

gaa

gzz
1

Dḃ

D ż

gab

gzz
~A29!

and

]z

]b
5

Dȧ

D ż

gab

gzz
1

Dḃ

D ż

gbb

gzz
. ~A30!

Substituting~A29! and ~A30! into ~A28! results in

~2ȧ1Dȧ!
Dȧ

D ż
gaa1~2ḃ1Dḃ!

Dḃ

D ż
gbb1~2ż1D ż!gzz

12~ ȧDḃ1ḃDȧ1DȧDḃ!
gab

D ż
50 ~A31!

which is simply the conservation of energy condition. There-
fore, the normal condition for specular reflection also holds,
and thus we have proven that any three-dimensional rigid-
body colliding elastically between two parallel, flat walls is
equivalent to a billiard problem.
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